Refine Your Search

Topic

Author

Search Results

Technical Paper

Development of a New Driving Posture Focused on Biomechanical Loads

2006-04-03
2006-01-1302
Fatigue resulting from long-term driving can be classified into physical and mental fatigue. Physical fatigue seems to be mainly caused by driving posture. The purpose of this study is to develop a new driving posture for reduction of causal factors of physical fatigue, that is, biomechanical loads caused by the posture. In this paper, driving posture was optimized by subjective optimizations of seat contours and biomechanical analysis considering necessary conditions for driving operations and forward view. The new driving posture was tested by subjective evaluations and pelvic movement measurements. It was found that the new posture reduced physical fatigue dramatically.
Technical Paper

Effect of Composition, Particle Size, and Heat Treatment on the Mechanical Properties of Al-4.5 wt.% Cu Based Alumina Particulate Reinforced Composites

1998-02-23
980700
The quest for higher efficiency and performance of automotive vehicles requires application of materials with high strength, stiffness and lower weight in their construction. Particulate-reinforced aluminum-matrix composites are cost-competitive materials, which can meet these requirements. MMCC, Inc. has been optimizing particulate-reinforced alloy systems and developing the Advanced Pressure Infiltration Casting (APIC™) process for the manufacture of components from these materials. This paper discusses the results of a recent study in which composites reinforced with 55 vol.% alumina were cast using two sizes of alumina particulate and eight different matrix alloys based on Al-4.5 wt.% Cu with varying amounts of silicon and magnesium. Optimum heat treatments for each alloy were determined utilizing microhardness studies. The tensile strength and fracture toughness were evaluated as a function of alloy chemistry, particulate size, and heat treatment.
Technical Paper

Development of a Valve Train Wear Test Procedure for Gasoline Engine Oil

1994-03-01
940794
An analysis was made of wear factors by investigating the effect of engine operating conditions on valve train wear. It was found that cam nose wear increased as larger amounts of combustion products, including nitrogen oxides and unburned gasoline, became intermixed with the engine oil. Based on these results, a valve train wear test procedure has been developed for evaluating cam nose and rocker arm wear under engine firing conditions. It has been confirmed that this test procedure correlates will with ASTM Sequence VE test and CCMC TU-3 test.
Technical Paper

Improvement in Pitting Resistance of Transmission Gears by Plasma Carburizing Process

1994-03-01
940727
The application of both high strength gear steels and shot peening technology has succeeded in strengthening automotive transmission gears. This technology, though, improves mainly the fatigue strength at the tooth root, but not the pitting property at the tooth face. Therefore, demand has moved to the development of new gear steels with good pitting resistance. In order to improve pitting resistance, the authors studied super carburizing which is characterized by carbide dispersion in the case, especially processed with a plasma carburizing furnace. Firstly, the influence of the carburizing temperature and carburizing period on the carbide morphology was investigated and the optimum carburizing conditions were determined. Secondly, the fatigue strength and pitting resistance was evaluated using carbide dispersed specimens.
Technical Paper

Sinter Diffusion Bonded Idler Sprocket of Automotive Engine

1995-02-01
950390
The key-points in the diffusion bonding technique of green compacts during sintering, are the material compositions, which should be chosen according to their dimensional change during sintering, and the fitting clearance, which should be maintained in the range of press fit. Applying this technique, we have developed sinter-diffusion bonded idler sprockets for automotive engines by comfirming the bonding strength and torsional fatigue strength. And we also have developed a nondestructive analysis method for assuring the joint strength of idler sprockets in the mass production.
Technical Paper

Development of the New Generation Ergonomic Seat Based on Occupant Posture Analysis

1995-02-01
950140
In this study, the functions required of automotive seats were analyzed from the standpoint of occupant posture. The results have been incorporated in the development of the New Generation Ergonomic Seat, which better fits the contours of the human body and prevents a stooped posture that places a greater load on the lumbar region, thereby reducing fatigue during long hours of driving. The new seat adopts the concept of “combined pelvic and lumbar support,” based on an analysis of the muscular and skeletal structure of the human body, sitting posture and body pressure distribution.
Technical Paper

Development of a High-Performance TiA1 Exhaust Valve

1996-02-01
960303
A new high-performance and lightweight TiA1 intermetallic compound exhaust valve has been developed. The TiA1 valve can improve power output and fuel economy by contributing higher engine speeds and a reduction in valvetrain friction. It was achieved by developing a Ti-33.5A1-0.5Si-1Nb-0.5Cr (mass%) intermetallic compound, a precision casting method for TiA1 that provides a low-cost, high-quality process, and a plasma carburizing technique for assuring good wear resistance on the valve stem end, stem and face.
Technical Paper

Effects of Piston-Ring Dynamics on Ring/Groove Wear and Oil Consumption in a Diesel Engine

1997-02-24
970835
The wear patterns of the rings and grooves of a diesel engine were analyzed by using a ring dynamics/gas flow model and a ring-pack oil film thickness model. The analysis focused primarily on the contact pressure distribution on the ring sides and grooves as well as on the contact location on the ring running surfaces. Analysis was performed for both new and worn ring/groove profiles. Calculated results are consistent with the measured wear patterns. The effects of groove tilt and static twist on the development of wear patterns on the ring sides, grooves, and ring running surfaces were studied. Ring flutter was observed from the calculation and its effect on oil transport was discussed. Up-scraping of the top ring was studied by considering ring dynamic twist and piston tilt. This work shows that the models used have potential for providing practical guidance to optimizing the ring pack and ring grooves to control wear and reduce oil consumption.
Technical Paper

A Look at the Automotive-Turbine Regenerator System and Proposals to Improve Performance and Reduce Cost

1997-02-24
970237
The adoption of turbine engines for automotive power plants has been hampered by the high cost, high leakage and high wear rate of present designs of ceramic-matrix regenerators. Proposals are made and analyzed here for design directions to achieve substantial improvements in all three areas. These include lower-cost extruded and pressed matrices; and clamping seals coupled with incremental movement of the rotary-regenerator matrix.
Technical Paper

Development of Door Guard Beams Utilizing Ultra High Strength Steel

1981-02-01
810031
Door guard beams have been developed through the utilization of ultra high strength steel (tensile strength>100 kg/mm2). At first, the sheet metal gauge was reduced in proportion to the strength of the ultra high strength without changing the shape of the beam section. This caused beam buckling and did not meet guard beam specifications. Analyzing this phenomena in accordance with the buckling theory of thin plates, a design criteria that makes effective use of the advantages of ultra high strength was developed. As a result, our newly designed small vehicle door guard beams are 20% lighter and 26% thinner than conventional ones. This makes it possible to reduce door thickness while increasing interior volume.
Technical Paper

Deterioration of Heat Resistant Alloys for Automobile Emission Control Equipment

1980-02-01
800318
Various heat resistant alloys are being introduced for use in automobile emission equipment, such as thermal reactors and catalytic converters. For the past several years Japan has been developing alloys which emphasize oxidation resistance. Therefore, oxidation phenomena have been thoroughly researched and clarified. On the other hand, embrittlement, which is a marked deterioration similar to oxide deterioration, has not been studied sufficiently. The major subjects of investigation were the two forms of embrittlement in austenitic heat resistant alloys, caused by the precipitation of σ phase and the absorption of Nitrogen. Useful information was obtained from these results.
Technical Paper

Development of Digital Tire Pressure Display Device

1985-06-01
851237
Basic vehicle performance, such as Safety, Comfort and Economy, are by dependent on tire performance, and it is the air pressure in the tire which assures this performance. However, tire air has a tendency to leak naturally, making it necessary to check them periodically. Since a deterioration in vehicle performance resulting from a drop on tire air pressure can not be directly felt by the driver, the number of people maintaining their tires sufficiently is relatively few. There have been many tire pressure warning devices developed which advise the driver when the pressure drops below a prescribed level. Differing from conventional devices, the TWD-III features a 7-step digital display (at a pitch of 0.1 kgf/cm2) which shows the pressure of each tire within an optional range, and it also has a flat tire warning function. The employment of echo effect from clystal vibrator resonance precludes the need to attach a power source on the tire.
Technical Paper

Parametric Analysis of Resistance Spot Welding Lobe Curve

1988-02-01
880278
A linearized lumped parameter heat balance model was developed and is discussed for the general case of resistance welding to see the effects of each parameter on the lobe shape. The parameters include material properties, geometry of electrodes and work piece, weld time and current, and electrical and thermal contact characteristics. These are then related to heat dissipation in the electrodes and the work piece. The results indicate that the ratio of thermal conductivity and heat capacity to electrical resistivity is a characteristic number which is representative of the ease of spot weldability of a given material. The increases in thermal conductivity and heat capacity of the sheet metal increase the lobe width while increases in electrical resistivity decrease the lobe width. Inconsistencies in the weldability of thin sheets and the wider lobe width at long welding times can both be explained by the heat dissipation characteristics.
Technical Paper

A Method for Predicting Connecting Rod Bearings Reliability Based on Seizure and Wear Analysis

1988-02-01
880568
Maintaining reliability of the connecting rod bearing is a very important subject, and the following is a problem that needs to be overcome. Predicting reliability has generally depended on minimum oil film thickness (M.O.F.T), but recently, the engines of passenger cars which have greater power and speed potential than conventional ones are sometimes run beyond their M.O.F.T. limit (a degree of roughness around the crank shaft's axis.) In such a case, it is so difficult to predict reliability according to M.O.F.T., that we need a new index which directly shows seizure and wear. For this purpose, we found that the crank shaft pin temperature can be a key cause of seizure and wear according to an analysis of the relationship between its temperature and the seizure and wear caused intentionally. Using this method, we confirmed that the combination of bearing and crank shaft materials is very important for preventing seizure and wear.
Technical Paper

On Fatigue Testing of Passenger Car Body Construction

1971-02-01
710261
Fatigue tests on a body in white have been made with torsional load and compared with previous results for assessments, where it was difficult to agree with proving ground tests in evaluating the life. Modifying the above mentioned fault, a programmed fatigue test method on the body in white is presented in this paper. The newly developed programmed fatigue test method is the simultaneous loading of the bouncing and torsional modes to a body in while by an electrohydraulic fatigue testing machine in accordance with the programmed sprung mass accelerations. Applying this method, the comparatively accurate assessment of proving ground test was made at the condition of the body in white, and the development period for body construction was shortened.
Technical Paper

Development of Improved Metal-Supported Catalyst

1989-02-01
890188
A compact, high-performance and durable metal-supported catalyst has been developed by using the properties of the metal support effectively. The advantages of the metal-surpported catalyst against the ceramic-supported one are higher geometrical surface area, higher heat conductivity and thinner wall thickness. Higher geometlical surface area and higher heat conductivity lead to higher conversion efficiency after durability test and it allows reduction in catalyst volume. And the thinner wall thickness lowers gas flow resistance. But also, the metal-supported catalyst has the disadvantage of larger heat expansion and it requires special structure and material.
Technical Paper

High Performance Differential Gear

1989-02-01
890531
Excellent fuel economy and high performance have been urgent in Japanese automobile industries. With increasing engine power, many of the power train components have to withstand higher loads. Differential pinion gear being one of those highly stressed parts, excellent fatigue and shock resistance have been demanded. At first the fundamental study on the fatigue and impact crack behavior of carburized components was studied and the new grade composed of 0.18%C-0.7%Mn-1.0%Cr-0.4%Mo was alloy designed. Furthermore, Si and P is reduced less than 0.15 and 0.015%, respectively aiming at the reduction of intergranular oxidation and improved case toughness. The differential gear assembly test has proved that the new grade shows three times as high impact strength as that of conventional steel, SCM418, and almost the same as that of SNCM420 containing 1.8%Ni.
Technical Paper

Development of Practical Heads-Up Display for Production Vehicle Application

1989-02-01
890559
THIS PAPER presents an advanced heads-up display which has been newly developed for use in 88 Nissan Silvia model. The HUD consists of a projector with a newly developed high brightness VFD and light-selective film used as a combiner which is coated on the windshield. This combination provides good display legibility even under bright sunlight. The display shows the vehicle speed in a three-digit reading at distance of more than one meter from the driver's eyes. The windshield-coated combiner conforms to U.S. safety standards concerning light transmittance, abrasion and other performance requirements. Experimental data are also presented which substantiate the HUD's high legibility and confirm its effect in enhancing the driver's attention toward the road ahead
Technical Paper

Current Trends of Passenger Car Gasoline Engine Oils in Japan - Report by JASO Engine Oil Subcommittee

1986-10-01
861512
Engines in Japan have higher output versus small displacement (bhp/liter) and require low phosphorus content in the engine oils to meet the most stringent exhaust emission regulation in the world. The market survey of typical API SF oils in Japan showed that the average phosphorus content was approximately 0.07 %. Under such circumstances engine oils provide good performance with the usage of secondary zinc di-alkyldithiophosphates (Zn DTP) for valve train wear protection, addition of friction modifiers for fuel economy, etc.
Technical Paper

Evaluation of Passenger Car Gasoline Engine Oils by JASO Test Procedures—Report by JASO Engine Oil Subcommittee

1987-11-01
872122
Japan Automobile Standards Organization (JASO) Engine Oil Sub-committee have been working on the unification of the engine oil evaluation test procedures in Japan. The Engine Oil Sub-committee participated in the recent activity of the worldwide engine oil standardization of SAE and ISO. As one of the chain of activities, JASO tests M328, M331, and M333 (valve train wear, detergency and high temperature oxidation respectively) were conducted on the REOs of ASTM and CEC to find the correlation. The detergency tests (varnish and sludge) showed good correlation with the ASTM REOs. CEC good and poor reference oils seemed to give good results in JASO valve train wear test, while ASTM reference oils unexpectedly gave opposite results in Japanese valve train wear tests.
X